NoOps:
More Dev, Less Ops

Roy Miller, Devellocus
Southern Fried Agile 2014

We want

Discipline
We track what we do for the team’s benefit

Focus
We get to spend most of our time making software

Transparency
Fverybody can see where things stand at any point

Consistency
We do the same stuff in the same way, every time

Can we please make SOFTWARE?!

S atg | sed 's \N([0-91\{1,8\}
\).* \1 g' | xargs atrm

Small(er) Org

a—’— Blg org
AN
S -,
A 7’
\ e
\ /
\/
v
(]

The promise

Development ' Operations

Reality

Development Operations

DevOps = ..0ps

Time
Spent

]
Development Operations

Dev

-

S TR S
- 7l 73 7 8 3 1 1 113 P a2 ~
F ,ﬂ'zlfifu’g'.ﬁ.’j’g-’jﬁ h

because listening 1 am IIFOI'J

NoOps

nourl

The bare minimum Ops required for a team to
create great software at maximum responsible
speed

HOwW you can ...

Automate Everything

The NoOps Principle

An app knows its stuff, the platform doesn’t

App Platform
Knows build file Moves things to
locations, environments, runs
deploy targets, etc. things

Developers own their app
Setting up new pipes is easy

Continuous Delivery

fast failure
build once, stages ... LN automated code pipe shows failures,
deploy many have ... tasks moves and testing generates notifications
. . T . public
Rel@ise 1.0.0 e N L T release
code check-in| JRalLUE FICLRYEAN AN N A RN A e
kicks off Cl — i : R ——————

3
. y 1 L 5 minutes ago _ 45 sec
> GoBUAT "~
o " 10 minaden age M e
N
N
~
~

& built-in :
quality stat|c.
checks analysis
Release Candidate (RC)
3 shortfeedback

loop
A clear, visible information radiator to show the state of the software at any point

© Devellocus ALL RIGHTS RESERVED

10

The TechStew

Initially targeting Node/Rails on Linux ... but we need Windows, too

Artifact For platforms/codebases
Management with binaries

notify [build #] store
/ GitHub /_\/ _____________________________
|
S

o
N4 VAGRANT

lﬁ, & Jenkins server orchestrates al?)]azon -
o4 — —notify—» B 3 webp services™
RALWIA_X <—update) noti y: “‘:\a Jenkln builds and,o/pe flow
|
el | :
Léféjr?gf checkin | ‘::: Capistrano
code | Build Fesrmsszzsccccc. @ deploys code
| \ eI
| | N el Tl L
i \\\ \\\\ ‘\\\\ “~\\\\\
I v v K Y
|
|
| Acceptance [Integration > UAT — Public
|
: AMis
| AWS creates
| Instances from AMI
‘ | * Performance
CHEF |
|
|
|
|
|
|

— i — — — — — — — — — — — — — — — — — — —— — — — — o e e

Before we divein...

ﬂ I’m no sysadmin ...

’'m sure I've done unsavory things

This isn’t a fancy Rails setup...
The app is a basic blog app

It’s as secure as we need it ...
We're maturing as we go

I’m not a Chef ...
There might be better ways to bake

%

It’s command line for now ...
_ Ultimately a Rails app, most likely

et
1

=) You may have limits ...

LIMIT

O You might not be able to do some (or any) of this

Before we divein...

'/%3‘ No Animals

Were Harmed

One pipe definition

Stages [- n .] additional installs via

Chef recipes

:name=>:build,
:display_name=>"Build",
:role=>:ci,

rservers=>|
roles=>[:ci, :web, :app, :dbl, :instance_type=>"m3.medium", :installs=>[:nginx, :mysql] }

{ :
]f

1 jobs=>

{ :

sequence=>1, :name=>"unit-test", :task_name=>"Unit Test",
:build_on_scm_push=>true, :notify=>true,

:update_scm_status=>true, :publish_to_github=>true,

:create_delivery_pipeline_version=>true,
:notify_rally=>true },

: sequence=>2, :name=>"check-quality", :task_name=>"Check Quality",

: commands=>"echo '[placeholder] run static analysis'" },

:sequence=>3, :name=>"check-pipeline", :task_name=>"Check Pipeline" },
:sequence=>4, :name=>"deploy-uat", :task_name=>"Go to UAT", :notify=>tru

:next_stage=>[:uat]

}

stages have 1:N se
with 1:N roles

rvers chain stages together so
Jenkins can chain jobs

define Jenkins jobs,
potentially with custom

commands

Pipes, Stages, and Boxes

Pipeline — Stage < PipelineBox

L

Pipes can be short...

Aggregated view

Build 1.1.0.250

Unit Test
20 days ago

Check Quality

20 days ago 1 sec

Prep Pipeline
20 days ago 3sec

Go to Acceptance

20 days ago 34 sec

or long...

Aggregated view

10 sec

Build 1.0.0.75 Acceptance

Unit Test Test

12 minutes ago 1 min 16 sec 8 minutes ago 0sec

Go to Integration

7 minutes ago 0sec

Check Quality

11 minutes ago 2 min 4 sec

Store Binaries
9 minutes ago 0sec

Check Pipeline
9 minutes ago 0 sec

Go to Acceptance

8 minutes ago 38 sec

Yy

Acceptance

Test

20 days ago

Go to Public
pending

1.0.0.75

e

1s8ec

Integration

Test

7 minutes ago 0sec

Go to Performance
7 minutes ago LE

Go to UAT
pending

1.1.0.250

—>

UAT
Smoke Test

4 days ago 0sec

Go to Public

4 days ago 2sec

Public

Smoke Test

21 days ago

1sec

Create and converge machines
with Chef in local mode
(i.e., Chef Metal)

def
descriptor = ClusterDescriptor.new()
descriptor_file_name descriptor create for stages

project_root = File.join(File.dirname(File.dirname(File.exg
pipeline_path = File.join(project_root)
metal_command = "cd #{pipeline_path} && chef-client/[-z)#{descriptor_file_name}
status = . system_execute(metal_command)
status
end

ChefMetalClusterMaker.rb

Running is quick and painless

[10-18-2014 9:51] roymiller@darkcastle: ~/Workspaces/pipefitter on [9:51:36] L:1 N:4
+ bundle exec bin/pipefitter generate pipe sample The tool

orchestrates
[Pipefitter] 09:52:12 . .
[Pipefitter] 09:52:12 Defining stages F)|F)€3 C:reeeat|()r1

[Pipefitter] 09:52:12 All stages defined: build, uat, public
[Pipefitter] 09:52:12 Create stages
Starting Chef Client, version 11.16.0
resolving cookbooks for run list: []
Synchronizing Cookbooks:
Compiling Cookbooks...
[2014-10-18T09:52:21-04:00] WARN: Node darkcastle.local has an empty run list.
Converging 1 resources
Recipe: @recipe_files::/Users/roymiller/Workspaces/pipefitter/cluster_create.rb
* machine_batch[default] action ready ,\ 1
- creating machine sample-build-ci-web-app—db on Tog:AWS:298725748436:us—east-1 \@
flavor_id: "m3.medium"

key_name: "pipeline" o
- creating machines sample-uat-web-app—db, sample-public-web-app, mple—public—db on fog:AWS CHEF
:us—east-1
flavor_id: "t2.small"
key_name: "pipeline" f I
groups: ["pipeline"] Che Meta
groups: ["pipeline"]

image_id: "ami-80bc6ee8" COOkS

image_id: "ami-4aa27022"

It's ready to use, once you copy some files and configure your app.
Pipefitter saved you some work by creating these Capistrano stage files:

* output/build.rb

% output/public. rb You see results

* output/uat.rb

Here's what you need to do: and TODOS

Copy those files to the config/deploy dir inside your app \/\/I"]en |t,S done
Copy the Pipeline file to your app root (if you haven't already)

Set build 'host' in config->database.yml to: ip-172-31-29-195.ec2.internal o
Set uat 'host' in config->database.yml to: ip-172-31-29-185.ec2.internal < 10 mln
Set public 'host' in config->database.yml to: ip-172-31-29-184.ec2.internal

Set your existing GitHub webhook to: http://jenkins:dvl_123@54.172.116.2:8080/github—webhook/

[Pipefitter] 10:01:37 —
[Pipefitter] 10:01:37 —

Phoenix infrastructure is real

Martin Fowler coined the term here: http://martinfowler.com/bliki/PhoenixServer.html

Build X K 1.0.0.75 UAT
Unit Test Smoke Test
12minessgo 1 min 16 ddaypago Osec

Check Quality r Go to Public
11 minitesago 2min 4 sec 4daago 2sec

All automated
All ¢in code”
Takes only minutes

1.0.0.75 1.0.0.75 UAT

An example ...

